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Abstract. We extract information about collisions of ultra-cold ground-state rubidium atoms
from observations of a g-wave shape resonance iffRb +8°Rb system via time-independent

and time-dependent photoassociation. The shape resonance arises from a quasi-bound state
inside a centrifugal barrier that enhances the excitation to the bound electronically excited state
by the photoassociation laser in the time-independent experiment. The shape resonance is
sufficiently long-lived that its build-up through the barrier can be observed by first depleting it via

a photoassociation laser pulse and then measuring the rate of photoassociation by a second laser
pulse with a variable delay time. A combined method of analysis of the time-independent and time-
dependent experiments is presented. We discuss the spectroscopy of states of two particles with
spin trapped inside a centrifugal barrier, interacting via direct and indirect spin—spin interactions.

1. Introduction

Interactions between ground-state alkali atoms play a key role in many experiments in cold-
atom physics. The accuracy of atomic clocks based on an atomic fountain of laser-cooled
Cs atoms, for instance, is limited by frequency shifts due to binary collisions between the
atoms during their fountain orbit [1]. Atomic interaction processes are also crucial for Bose—
Einstein condensation in magnetic traps [2—4]: they determine the stability or instability of
the Bose condensate via the sign and magnitude of the condensate self-interaction, and also
the inelastic rates for transitions from trapped to untrapped states. A number of methods
are available to obtain information on such interaction processes. A very powerful method
is based on the cold-atom photoassociation process [5—11]. In this free—bound transition
process two colliding ground-state atoms are excited by a photoassociation (PA) laser to a
bound electronically excited state. Due to the Franck—Condon principle, the excitation occurs
preferably near the outer turning poigtof the excited state, where the atoms have a velocity
comparable to that in the ground-state channel. A direct consequence is that the excitation
probability is approximately proportional to the ground-state collisional radial wavefunction
squared at this outer turning point, which enables one to map out the nodal structure of this
wavefunction along a frequency axis. This approximation can be improved by calculating a
radial transition integral, which is common practice in analysing cold-atom PA experiments
[11]. Figure 1 shows a presentation of radial wavefunctions of the ground state and the excited
state, together with their above-mentioned Franck—Condon relationship.
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Figure 1. Cold-atom photoassociation. Excitation of a colliding pair of Rb atoms by a phetgn (
leads to the formation of an excited Rimolecule in the § excited-state potential and is followed

by spontaneous decay (frequenrgy The square of the ground-state radial Wavefunct@(m) of
the initial collisional state and of the excited-state radial wavefuno,{gajﬁ) are shown.

The actual application of this simple idea still leads to a very complicated situation because
of several facts:

(a) The hyperfine structure of the excited electronic states, the so-called hyperfine ‘spaghetti’
[12].

(b) the difficulty of determining a large number of combined triplet and singlet parameters in
the ground-state collision simultaneously;

(c) the fact that several ground-state partial walyemnging fromJ — 2 (or 0) toJ + 2,
contribute to the excitation of a single rovibrational excited-state. This is due to two
circumstances:

e the electronic spins contribute to the total molecular angular momentum;

o the laser photon inducing the transition introduces an angular momeantimtoihe
systemwith, in principle, various orientations relative to the initial angular momentum
of the two-atom system.

As a consequence, by angular momentum conservation, £gak can be reached
starting from non-negativievalues ranging frony —2toJ + 2.
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By a careful choice of experimental circumstances we have been able to eliminate all three
complications [10]. The first step is to doubly polarize the ground-state atoms, i.e. to prepare
them in the hyperfine state with fully stretched electronic and nuclear spins along a magnetic
field B with optical pumping lasers. In this way only the triplet spin state in the initial channel
is involved, thus avoiding complication (b).

The second step is to concentrate on the excitation of a suitable excited electronic state:
the QJ' state connected with trﬁsm + 2P1/2 separated-atom limit (we will refer to this state
as the lower Q state). The structure of this and all other excited states associated with the

2S +2p separated-atom limits has been studied by Movre and Pichler [13]. In the radial
range of outer turning points of the highegt(ésl/z + 2Py ) rovibrational states observed,
ranging from 41ag to 48 4y, this electronic state has a very simple structure, determined by
a 2 x 2 eigenvalue problem containing the fine-structure splitting of the excited atom and the
interatomic ¥ resonant electric dipole interaction. Due to the fact that the fine-structure
splitting dominates, the structure of the electronic state considered is simply given by the
product of the separated-atom states

[(PSu2{1A) 2P1a(2B)) o — (*S12(1B} *P1ja(2A)),_o]/v/2 @)

antisymmetrized in 1 and 2, with the electronic angular momémaupled to totalj = 0.

The notation 1A, for instance, signifies that the set of electrons 1 occupies the indicated state
around nucleus A. The angular-momentum coupling and the subtraction in the above expression
together assure the correct symmetry properties corresponding to the quantum nymbers 0
As pointed out in [14], to our knowledge this is the first observed example of a Hund'’s (e) case
in the literature, i.e. both the total electronic angular momentuand the rotational angular
momentum have definite values. The latter is conserved in the PA excitation process, so that
J equals the ground-statealue, thus avoiding complication (c): each photoassociation peak

J is the direct probe of the ground-state radial wavefunction for a single

Another advantage of the above choice of excited state is that it is a pure triplet state [13].
We conclude that the laser does not introduce a singlet admixture, which would spoil the above
pure triplet situation in higher order in the laser intensity, a complication that would occur in
the analysis of the time-dependent experiment in the following.

By the same choice of excited state, complication (a) is avoided. The vani@hamgl
j values imply that in very good approximation the nuclear spins are decoupled from the
remaining angular momenta. The hyperfine splitting is only second order and no complex
hyperfine-coupled problem needs to be handled in the final state. By the unique initial nuclear
spin state only the fully nuclear-spin polarized final state contributes.

Due to the vanishing value, the total electronic angular momentum before the excitation,
i.e. the vector sum of the electronic spins, is equal to minus the angular momentum of the dipole
PA photon absorbed. Using a PA laser beam propagating in the direction of the static magnetic
field B and preparing the ground-state atomsin the hyperfine state with fully stretched electronic
and nuclear spins alorg), we therefore find that a right-circularly polarized PA beam does not
lead to excitation, in contrast to a left-circularly or linearly polarized one. This was observed
experimentally [10]. Experimentally, we also find that only eVemtationally resolved states
are excited, in agreement with Bose symmetry in the (spin-symmetric) ground-state channel.
We thus achieve our goal: we are able to study the nodal structure in a single ground-state
channel by mapping it out as a function of the laser frequency.

In [10] we have been able, using the above approach, to make the first predictions for
the triplet scattering lengthr for binary collisions of°Rb atoms and, making use of a mass-
scaling rule, also fof’Rb atoms. The PA excitation probability is measured by having the PA
laser beam on intermittently with a far off resonance trapping (FORT) laser and two optical
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Figure 2. Photoassociation spectrum of thg Gibrational level at-5.812 cnt, relative to the

barycentre of the 5, + Py/> dissociation limit, for the collision of spin—polariz&?Rb atoms.
Notice the absence of odd rotational lines due to Bose statistics.

pumping laser beams during a certain time period. The number of atoms remaining in the trap
is reduced, because virtually all excited pairs of atoms decay spontaneously to free pairs with
a kinetic energy that is too large to remain in the trap (frequenayfigure 1). Probing the
atoms with laser-induced fluorescence, this results in a detectable change in the fluorescence
level, i.e. in a measurement of the photoassociation loss rate. Figure 2 shows an experimental
rotationally resolved PA spectrum for a vibrational state of the loyyestéte, measured using
a linearly polarized PA laser beam. In contrast to the case without optical pumping only even
J peaks occur.

The unique relation betweehand! thus realized makes it possible to simplify the analysis
considerably. In a dressed-state picture, represented schematically in figure 3, either the bound
excited level is shifted downward by the laser photon engtgyor the ground-state potential
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Figure 3. Dressed-states picture of the photoassociation process, including schematic ground-
state {/g + 6h%/mr2 for | = 2) and excited-staté/t) potentials. Changing the laser frequengy,

the excited bound state ener@y(v, J) with vibrational quantum numbaer, rotational quantum
number/ and outer turning poing, shifts over the Maxwellian energy distribution in the incoming
channel. The bold broken line indicates the position of the shape resoAagce

is shifted upward by the same energy (the resonance Igyglithin the centrifugal barrier

will be discussed in the following section). It thus becomes clear that the bound excited state,
which already has a finite width for spontaneous emission, is embedded in the ground-state
continuum and thus turns into a Feshbach resonance [15] with an additional yvidibin
laser-induced continuum decay.

While the observe#PRb PA spectrum containetl= 0, 2, 4 rotational peaks, we used only
the J = 0, 2 peaks in the previous analysis of [10]. The= 4 peak in thé>Rb PA spectrum
showed anomalous features, i.e. a larger width and a much lower saturation intensity, which
precluded an analysis along the same lines. In [14, 16] we recognized the anomaly, as well as
a similar anomaloug = 2 peak in thé’Rb PA spectrum, as being due to a shape resonance in
the ground-state channel. In this paper we will focus on the special possibilities that arise for
obtaining important information on interactions of cold Rb atoms from the exceptionally long
lifetime of the shape resonance in f&b +8Rb system. On the experimental side this adds
the possibility of a pulsed photoassociation experiment to the usual type of time-independent
photoassociation experiment, yielding completely new information. On the theoretical side
inelastic processes with a time scale too slow to play a significant role during an elastic collision
in the usual type of photoassociation experiment, start to contribute significantly, opening the
possibility to study a larger set of cold-collision properties. A brief description of the present
work was presented in [14].

This paper is organized as follows. In section 2 we discuss the concept of shape resonance.
Section 3 is devoted to a determination of excited-state parameters needed for further analysis.
In section 4 we discuss the decay mechanisms offtRé g-wave shape resonance and
include them in the analysis of the time-independent and the time-dependent photoassociation
experiments. Conclusions are presented in section 5.

2. Shape resonances

When two atoms collide via a partial-wave# 0 a long-lived state inside the centrifugal
barrier may form during the collision process. Such a state is commonly referred to as a
shape resonance. Figure 3 shows, in addition, a schematic picture of a shape resonance in
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Figure 4. Square of = 2 partial-wave ground-state wavefunctioi$Rb) uS(r) in the presence

of a shape resonance and in the absence of a shape resonance at a collisio® eadr@ymK.

The interatomic distances for which the collision energy is smaller than the potential energy, i.e.
for which in a semiclassical picture the atoms tunnel through the barrier, are indicatedug(vs)et,

in relevant interatomic distance interval for photoassociation. Note the enhancement if a shape
resonance is present.

the ground-state potential. It has a dramatic influence on all inelastic processes taking place
within the barrier. Figure 4, for instance, shows the radial wavefunction squared for d-wave
87Rb +87Rb scattering in the presence of a shape resonance (the actual situation) and without
one. The wavefunction without a shape resonance is calculated by modifying the inner part
of the potential slightly so that the shape resonance shifts downward to negative energies.
Clearly visible in figure 4 is the phase shift between the wavefunction with and without shape
resonance.

Shape resonances are thus expected to tremendously enhance the PA loss rate. The place
where this enhancement enters the expressions for the PA loss rate is in the partiaj width
for decay of the PA Feshbach resonance. In turn, it then shows a resonance dependence on the
collision energy, as will be described explicitly in the following section.

The existence of a shape resonance in a partial-wave channel leads to the possibility of
extracting useful information on cold collisions. Without it, as explained above, the Franck—
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Condon oscillations lead to information on the nodes in the radial wavefunction in the excitation
region. Translating this to the nodal structure atinfinity, i.e. the triplet scattering length, requires
sufficiently accurate knowledge of the long-range interaction. For this reason, when extracting
a scattering length from the energy dependence of Franck—Condon factors alone, one generally
needs to use theoretical information on dispersion coefficients, in particulérs teefficient

[10]. The existence of a shape resonance below the top of the barrier yields precisely the second
piece of information needed to determi@ig andat separately from experiment, essentially
because it can also be considered as a function of these two parameters. In [16] we have
demonstrated this more explicitly than here (see in particular figure 4 and the corresponding
discussion in the text of that paper).

3. Determination of excited-state parameters

The expression for the partial width used in our analysis of PA experiments contains a radial
transition matrix element with a product of excited and ground-state radial wavefunctions.
To calculate the former we need a sufficiently accurate excited-state pot&atiallhe
determination of this potential is not only of interest for this purpose. Investigations of the
excited-state potential have led to a very accurate prediction of the excited-state lifetime of
optically excited atoms. The possibility of such a prediction arises from the fact that the lifetime
contains the same electric-dipole matrix element as that occurring iri tAeglsonant electric-
dipole part ofVs.

Existing methods to extract dipole matrix elements from photoassociation spectra are
based on a semiclassical approximation [6] or limited by the uncertainty of the inner part of
the potential [17]. The P state asymptotically connecting with the, S+ P5/, fine-structure
limit is an exception to this last statement, because this is a pure long-range state which can
entirely be described by a limited set of dispersion coefficients [18-21]. In this section we
will present a new approach, based on the accumulated-phase method [10, 22, 23], not limited
by any semiclassical approximation or inaccuracy of the inner part of the potential. Again, a
brief presentation of this new approach has been given in a previous publication [10]. A recent
survey of work on the extraction of accurate predictions of excited atomic state lifetimes from
cold-atom PA experiments has been presented by Weirad{11].

As pointed out above, the excited state we are using in our experiment i§ thiate,
asymptotically connecting with the,$ + Py, state. In the above we have briefly referred to
the 2x 2 eigenvalue problem determining the electronic structure of the excjtestiales at
large interatomic distances. It contains the fine-structure splitting of the excited atom and the
interatomic ¥ resonant dipole interaction. In the fine-structure basis it is given by

~_ ( Ea(Sy2) t Ea(Ps2) 0 >
Yo, = ( 0 Eat(S1/2) + Ear(P1)2) + Vo
_ 1 d(P32) d(Py2)  ~/2d(P12) d(Ps)2) Eis O
4 3\ V2 + 2
TTEQr 2 d(P]_/z) d(P3/2) 0 0 0

with E; the energies of the atomic states involvEg; the resonant electric dipole—dipole part,

Es the fine-structure splitting anf(Py»), d(Ps/2) the atomic electric-dipole matrix elements,
connecting the ground state with the, £ Ps,» excited states. Note that tﬁsl/z + 2P1/2
diagonal matrix element of the/® interaction vanishes because an electrgnie 0 state

is spherically symmetric, so that there is no preferential orientation of the atomic centres of
mass relative to one another. In more formal terms this interaction has the angular momentum
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structure proportional to

[Y2(7). (d(D). d(2), ]y, 3)

and according to the Wigner—Eckart theorem the expectation value of arank-2 tensor operator in
an angular momentum O state is zero. Asaconsequence, since we are studying photoassociation
atinteratomic distances for whidfjs is much larger than the electric dipole—dipole interaction,

the productd (Py/2) d(Ps,2) is the leading term in the strength of thgr$ coefficient of the

lower Q; potential. In the following we will use the shorthand notation

d? = d(P1j2) d(Ps)2) “4)

for this product.

To justify some aspects of our method we construct a mogigdd@ential. For the long-
range part we use the dispersion coefficients of Bussery [24] and Gatlaéf10]. The
inner part is based on a calculation of the eigenvalues of a potential matrix, consisting of the
triplet potentials of Spiegelmaret al [25] and arv-independent fine-structure splitting. The
two parts are connected by an exponentially varying exchange term. Using this potential we
calculate the phasg, of the rapidly oscillating radial wavefunction at an interatomic distance
r1 = 30 ag for the whole range of experimental excited bound-state energies. It turns out
that to very good accuragyy varies linearly over the entire energy range. This implies that

Table 1. Positions for experimentally observed bound stafgsof the 85Rb + 8Rb and®’Rb

+ 87Rb interatomic potentials, asymptotically connecting with the; S P2 fine-structure
limit. The barycentre of the transition fro¥PRb(2s1/2(F = 3)) + 8°Rb(2s12(F = 3))
to BRb(2s;,2) + BRb(2py2) is 125788640 cntl. The barycentre of the transition from
87Rb(2s1/2(F = 2)) +8"Rb(2s1/2(F = 2)) to 7Rb(2s1/2) + "Rb(2py/2) is 12578780 cnt 2.

E> ®Rb) cnTY)  E, — Eo (87Rb) (cnT?)

12576986+ 0.003
12575948+ 0.003
12575309+ 0.003
12572850+ 0.003 Q0123+ 0.001
12571836+ 0.003 Q132+ 0.001
12570716+ 0.003
12569489+ 0.003
12568152+ 0.003
12566701+ 0.003

Eo (85Rb) (cnt) E; — Eo (®Rb) (cnTl)

12575499+ 0.003 Q101+ 0.001
12574776+ 0.003 Q1084+ 0.001
125739634+ 0.003 Q114+ 0.001
12573052+ 0.003 01244+ 0.001
125720374+ 0.003 Q129+ 0.001

1257092+ 0.03
1256968+ 0.03 0146+ 0.001
1256837+ 0.03
1256690+ 0.03 0159+ 0.001
1256530+ 0.03

1256360+ 0.03 0180+ 0.001
1256178+ 0.03 0184+ 0.001
1255981+ 0.03 0193+ 0.001
1255770+ 0.03 0206+ 0.001
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we can summarize the history of the colliding atoms ingigdan the range of experimental
energies entirely with a very limited number of only four parametegs:its derivative with
respect to the bound-state enetgy, 42, and theCe, dispersion coefficient. We also include
the higher-order dispersion interactiorG,(r" with n > 8 [24]); the uncertainty in these
interactions is not important to the present analysis.

In our analysis we us¢ = 0 levels for®®Rb and/ = 2 levels for?’Rb (see table 1). In the
combined analysis of these sets we have only five parameters, because the phase derivatives
for the two isotopes can directly be related to each other Yymascaling rule

87, _ m(®'RD) g5
¢k _‘,—m(85Rb) Pk (5)

Note that®’¢, and®¢, have a similar scaling relationship, but we vary these phasesmmod
independently, because we do not know their integerparts. We now calculate for each set
of these parameters the corresponding bound-state energies and congtrfichetion

2=y (Eexm — En,i (®°¢o, *'¢0, *¢, Ce., d2)>2 ©)

i O Eexpi

whereEe,y; are the experimental bound-state energy levgls; the theoretically calculated

ones and,,,, the standard deviation in the experimental leveln figure 5 the area in the

Ce., d*-plane is shown wherg? is minimal or at most equal to twice the minimum value, for

the optimum values of the three phase parameters. This condition clearly defines a strip in
the Ce., d?-plane with a width of @ au in thed2-direction. Using the theoreticdls, value

from [24] we findd? = 8.8 £ 0.1 au, in good agreement with a recent value measured by
beam-gas-laser spectroscopy [26].

6 10 ciheor 14 18

6e

C,, /(10% a.u.)

Figure 5. Contour plot ofx 2 as a function o, andd? for the optimum values of the three phase
parameters. The broken vertical line indicates the theoretical vﬁg;@() of [24].
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4. Decay mechanisms of th&°Rb g-wave shape resonance

4.1. Introduction

In the above we considered the decay of the shape resonance by PA laser excitation. Also,
other decay processes become important if the lifetime of the shape resonance is comparable to
or longer than the time scale for these decay mechanisms. In this section we consider inelastic
scattering mechanisms due to decay to other ground-state hyperfine channels. As pointed out
in the brief first report on our work [14], long-lived shape resonances lend themselves to a new
kind of sensitive study of such processes. In this connection there is special interestin so-called
second-order spin—orbit coupling2, or indirect spin—spin interaction, which arises from a
mechanism very similar to the magnetic dipolar interactigp between the valence electron
spins, the only difference being that it does not mediate directly through a magnetic field but
via the electric field from the charges in the systemt. Recentlgbaimitio calculation of

Vi was presented [29] for various alkali atoms, in particf&b. For low molecular states
expectation values have been measured as well as calculated [28], but these give information
on small internuclear distances only.

Three mechanisms compete in depleting the shape resonance: the inelastic decay with
rate constantine;/h due to coherent contributions from dipolar decay and spin—orbit decay:
Yinel = (/Yaip + Ys0), the tunnelling ratej,./#) and the excitation to the excited state
via photoassociatiom( /i). Note that scattering theory [15] shows that the partial-wave
amplitudes, denoted above g&4ip and,/yso, are (positive or negative) real quantities. All
these quantities hinge critically on the exact enekjy of the shape resonance, which is
subject to a large uncertainty even if we know that it exists below the top of the centrifugal
barrier. Knowing the energy of this resonant state is comparable to knowing the last bound
state energy of a potential [30] and thus is important in determining the scattering length,
which is of great relevance for Bose—Einstein condensation experiments.

To determineE s andyine, in particular itsyso part, from experiment we have performed
a simultaneous analysis of time-dependent photoassociation data at high laser power, thus
eliminating complicated cross-terms betwegn, coupling and laser coupling during the
photoassociation pulses, and time-independent photoassociation data at very low laser
intensity, for which the laser excitation can be treated in first order. To study the influence of
¥inel ON the photoassociative losses at low laser intensities we have to include its influence in
the PA loss rate. This will be done in the following part of this section. In the last part we will
discuss the analysis of the time-dependent data and the determinafig &fidys.

4.2. Photoassociation rate constant including inelastic decay

To first order in the laser intensity, the squared scattesimgatrix element describing the
single-atom optical excitation for a pair of colliding ground-state atoms with collision energy
e and the subsequent spontaneous decay (decapydte using a photoassociation laser with
frequencyw, and field strengtl, = E| o, can be written as

> Yo (SMgslm;, e — QJM)
|Spal” =

= — . 7
(€ + Eg+ho — E¢)? + v /4 "

T This interaction was first studied by [27]. Its importance for the properties of ultracold alkali gases was first pointed
out by P Juliennet al. A detailed treatment can be found in [28].
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In this expression the previously mentioned partial widtHor excitation of anSMslm,, €)
ground state to aff2J M) excited state is equal to

y = 27|(QUM|[dQ) +d(2)] - EL|SMslm,, ). ®)

In equations (7) and (8. is the excited rovibrational state energly, the asymptotic internal
energy in the ground-state channélj) the electric dipole operator of atom 2 the total
electronic magnetic quantum number along the internuclear’saisl/, M the total molecular
angular momentum quantum numbers, excluding the nuclear spins.

From|Spa|? we obtain the photoassociation rate consfa(, | ) for a gas of cold atoms
with temperaturd” by calculating a thermal average

K(T, o) = <v12|SPA|2> . ©)
k th

For our purposes the most important factor in this rate constant is the partialyvidtich
will be worked out in more detail in the following paragraphs.

We expand the excited-stdt®J M) in products of atomic fine-structure states with a well
defined electronic angular momentyimm ;:

QM) =" c;(n|jQJIM)

J

> i)Y (IR — QlI0)|jlIM)
I

J

D (=1 IQ) — QUOY(jm lmy|J M)|jmlmy).  (10)

jijWL]

Substituting this in equation (8) leads to

27TI|_
Y=

D (=) IQ) — QUO)(jm jlmy|J M) /OC drcj(r)ug,(r)
€oc | G 0

2

x(jm;|[d(D) +d(2)] - 61| SMs)usrtgim, (r) (11)

containing the Franck—Condon overlap integral between the ground- and excited-state radial
wavefunctionsesagm, .« (r) andug; (r), respectively. A shape resonance in the ground-state
channel causes the initial radial wavefunction and thut show resonance behaviour. We
again refer to figure 4 demonstrating the strong enhancement.

Note that by the above substitution of equation (10) in equation (8) an additional
independent summation ovérm; quantum numbers of the final state would, in principle,
appear. Since the quantum numbers of the initial state stand only for the asymptotic incoming
spherical wave part, which may be different from the additional partial waves introduced into
the initial state by inelastic interactions, one will in general have incoherent contributions for
various final choices of these quantum numbers. This freedom should, in principle, be allowed
for, once one is to include inelastic ground-state contributions that change the relative orbital
angular momentum, such as the direct and indirect spin—spin coupling. This is what we are
now going to consider.

A straightforward but laborious method to include the influence of inelastic scattering
on the shape resonance would be to replace the simple initial state in equation (11) by a
coupled-channels wavefunction. This would automatically include combined effects from the
shape resonance and the inelastic ground-state transitions. Concentrating on the g-wave shape
resonance, a calculation of the coupled-channels state for the nine incapsipgerical waves,
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for a large set of collision energies, and for the large number of inelastic hyperfine channels
would be very laborious. Fortunately, we were able to show that a much simpler approach is
possible, by comparing a few representative coupled-channel wavefunctions inside the barrier
(the only positions where they enter the Franck—Condon integral) for a ground-state model
potential, with and without the inclusion of the inelastic spin—spin terms. Like the model
potential for the § state, this model potential is only introduced for the purpose of studying
the general properties of the corresponding wavefunctions.

The Hamiltonian of the coupled-channel ground-state problem is of the form

H =T+ Ve+ Vi + Vz + Vgpp + V2 (12)
a sum of a kinetic energy operatbr the central interactiol;, a sum of single-atom hyperfine
interactionsVys, the Zeeman interactioi’z, the magnetic dipolar interactiovy, and the
second-order spin—orbit interacti 2. Atest coupled-channels calculation shows that the
exact radial location and shape v are irrelevant. The only relevant quantity is the area
V42 of the radial profile, since in the radial transition integral the elastic wavefunctions are
virtually identical and oscillate so rapidly at the interatomic distances WHilds effective
that only the above area multiplied by the elastic amplitude squared is of importance. The
central interactiorV; is only partially known. The long-range part of the triplet potential and
associated partial-wave radial wavefunctionsifor 35aq follow from our previous analyses
of photoassociation spectra [10, 14, 16]. At these distances they can be describ@gtajl a
and an asymptotic behaviour dictated by the triplet scattering length. For the inner part we
use the theoretical potential of Krauss and Stevens [31]. We take the singlet potential from
Amiot [32] and the above-mentioneds value for the tail. Finally, to vary the unknown
singlet scattering length we add a variable phase to the singlet radial wavefunctions at small
interatomic distances.

Without the inelastic spin—spin terms the shape resonance can only decay via tunnelling
through the centrifugal barrier. This implies that the initial si&®s/m;,, €) in equation (8)
contains only the single partial-wave radial wavefunctioyy.,, (). Calculating this
wavefunction at a fixed arbitrary radius inside the barrier, we find that its dependence
on the collision energy can be very accurately described by a factor

ﬁnl/z
E — Eres+ iyout/2
with [ = 4 for the shape resonance. This expression follows from Wigner’s threshold law in
combination with the theory of resonances in scattering processes [33]. For the energy range
where the resonance enerfjysis expected to occur the tunnelling width,; of the resonance
agrees very well with the semiclassical value.

We now proceed by adding the direct and indirect spin—spin téiggsand vé2 to the
Hamiltonian. We then also find inelastic hyperfine components of the initial state, which make
it necessary to extend equation (8) far by adding total two-atom nuclear spin quantum
numbersi, M; to the final state and summing incoherently over their values. We stress
again that the nuclear spins are decoupled in the final state. Also the asymptotic incoming
guantum numbers of the initial state have to be supplemented/wih values. To keep the
discussion transparent we now add a superscript ‘0’ to the quantum numbers of the elastic
component of the initial state, to distinguish them from values for the inelastic components.
Because of the choice of a fully spin-stretched initial spin state we have the restriction
S0 =1, M2 =+11°=5 M? = +5,1° = 4. Note that for this doubly polarized situation we
also havef = 3, f2 = 3, F® = 6, M2 = +6. The initial states differ only in the value af,
which varies from-4 to +4. For each of these initial states the ground-state coupled-channels
calculation leads to the addition of a superposition of inelastic components.

(13)
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Figure 6. Total widthytot = yout+ (/¥dip + /7)/50)2 of the elastic wavefunction as a function of the

resonance energy for variom_ég) values (in kap) following from CC calculations. The straight
line shows the tunnelling width/gu ~ E*).

It turns out that the complicated coupled-channel superpositions can be calculated to very
high accuracy by a simple approach, in which one calculates the influence of the inelastic
interactions on the original shape resonance state by perturbation theory. This leads to a
splitting into a set of shape resonance states with resonance energies and widths changed by
AEsand Ay. A detailed study shows that eachE .5 varies linearly with the unknown
strength ofv? for reasonable strengths, just as expected from first-order time-independent
perturbation theory. The total width of each of the split resonances turns out to be equal to
the (incoherent) sum of the tunnelling widh,: and a contribution from coherent direct and
indirect spin—spin terms:

2
Yiot = Yout + Ay AY = Yinel = (\/ Vdip + Vso) . (14)

Figure 6 illustrates this result. In the® range considered\y varies quadratically with the
strength ofvd?, as expected from first-order time-dependent perturbation theory. It should be
pointed out that the dipolar interaction already leads to similar changes by itself.

Our simple approach consists of calculating the siff$.sby including a limited number
ofinelastic hyperfine channels that are significantly coupled in. The appropriate basis to discuss
this point is the hyperfine basjsf1 f2) FMy). It turns out that of all possible components
allowed by the selection rules only a very limited number contribute significanly:tthose
that are enhanced by the existence of the shape resonance, are sufficiently close in energy
and are coupled in via significant matrix elements. Since the hyperfine splitting is very large
compared to the inelastic interaction strengths, the coupling between thgthyesubspaces
can be neglected. We restrict ourselves to fhe- 3, fo = 3 subspace, because it contains
the incoming fully spin-stretched state. As a consequence, the opelatong,, Vg, and
v§§> are equivalent to simpler effective operatong;; becomes a constantz couples the
z-componentsf;, and f,, with effective gyromagnetic ratios

Yr = (YeS — ¥ui)/f = ve/6 —5y,/6 (15)
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to the field instead of the electronic and nuclear spins separdiglyas well asv?
f, and f5, instead of; ands,.

The picture thus following from our coupled-channel calculations is that of a new
spectroscopy of long-lived states of two atoms inside a barrier, the structure of which follows
from the competition between the mutual spin—spin interaction, couglingth £, and the
Zeeman precession. Afascinating aspect is the weakness of the effective spin—spin interaction:
taking into account the available volume inside the barrier it is only of the order of 0.02 mK.
The field strength needed to break it is only of order 0.2 G. With an actual field of only
7 G we are already in the strong-field limit. Although the radial dependenc@’é?band
Viip are highly different, they operate spatially only via the expectation values of their radial
parts. The problem is therefore completely equivalent to that of two magnetic dipoles with the
orientation-dependent interaction

Vspin—spin: Vdip + Vs(g) = (Cldip + dso) [fl : ]?2 - 3(7 - f_:l)(; : ]?2)] (16)

confined to move inside a barrier. Including the angular degrees of freedom, the eigenstates
labelledi are superpositions of basis states:

D i | (frf2) FMplm) (17)

couple

with f1 = f» = 3, subject to the selection ruMy +m; = 6 +m?.

For the special case of the incident valu@ = +4, for instance, the solution is very
simple. In that case we have an elastic wavefunction component only, which differs, however,
from that without inelastic interactions. It again shows a resonance behaviour as a function of
collision energy (see figure 7), but with the original Breit—Wigner resonance denominator of
equation (13) replaced by one with modifi€gs andy, as indicated above. Apart from this
replacement, there is to very good accuracy no change in the elastic wavefunction.

For m? = +3 the situation becomes more complicated. The number of coupled
components increases from nine?( = +4) to 16. The two significantly coupled states,
A=3fo=3F=5Mr=451=4m =+3andf, =3, f, =3, F =5 My =
+4,1 = 4, m; = +4, degenerate without Zeeman and inelastic interactions.BFpr 0.2 G
this degeneracy is first lifted by the Zeeman interaction. Subsequently considggramd

V2 as first-order perturbations we thus find the energy shifts for the split shape resonance
states. Figure 8 shows a comparison between energy shifts following from coupled-channel
calculations and values from this simple first-order perturbation treatment in which_/éﬁ)lly
occurs as a parameter. Clearly, the first-order perturbation treatment describes the rigorous
coupled-channel results very well. The same conclusion holds for lefgalues and other
B-values > 0.2 G).

Also, the widths of the new shape resonance states can be described with a perturbation
treatment. In this case the lowgt, f> hyperfine subspaces cannot be left out: the large final
available phase space leads to large contributions to the total decay width. The total inelastic
width of the resonant state is a sum of partial widths for decay to all possible hyperfine channels.
Each width contains a radial transition matrix element of the sumfgﬂfand Viip between the
wavefunctions before and after decay, to which the earlier remark about the area of the radial
profile of V2 applies. Making use of some Clebsch—Gordan algebra, we can express the total
set of decay matrix elements and thus the total change of the width faf alhd B values in
terms of the same unknown constaig .

Only one aspect needs to be discussed before finishing the presentation of the simple
approach. As pointed out above, fa® = 4 there is only one channel involved. The
replacement of the unperturbed Breit—-Wigner denominator by a perturbed one is then equivalent
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Figure 7. Square §) and argument) of the elastic ground-state wavefunction-at= 4549 as a
function of collision energy foVd? = 0 andVe? = 1.5 kag. The wavefunctions are corrected for

the background behavioéi*®. The crosses are CC results, the lines show the result of the resonance
formula, in the casé’s(g) = 1.5 Kag with Eres = 1.00 mK andytot = Ay + yout = 25.4 uK. The
energy shift due tv<2) is indicated byA Eres.

to a simple multiplication of the total unperturbed state in equations (8) and (11) by the ratio

E — Erest iVout/2
E — (Eres+ AEred +i(your + Ay)/2’

(18)
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Figure 8. Position of a resonant level as a function‘l}f) for them; = 3 entrance channel for

various magnetic fields. In the absencé/éf) andVyip the resonance occurs Bfes = 0.889 mK.
The pluses are CC results, the curves are based on a first-order perturbation model. The energy
shift of the resonant level due 1g;p alone is 3uK.

For Iowerm? values the situation is more complicated. In that case the perturbed shape
resonance statéare superpositions of unperturbed states with coefficients distinguishing

the latter states by the quantum numizgr We then need to multiply the unperturbed elastic
scattering wavefunction by

E — Eres+iyou/2
Z Qimy - A . . (19)
F E — (Eres"'AEFes) +i(your + Ay?)/2

In other words, the coefficientsalso play the role of determining the amplitudes by which an
incoming channel excites the various perturbed shape resonances. Thisis a direct consequence
of Feshbach'’s reaction theory for overlapping resonances (see [15], p 220). The expressions
(18) and (19) have been confirmed by coupled-channel calculations.

Comparing the ratio of theoreticdl = 4 and 0 or 2 peak areas to the corresponding
experimental valuewithout inelastic decaywe find the theoretical ratio to be too large. This
is an anomaly of thg = 4 PA peak that we find in addition to the anomalous features of this
peak associated with the shape resonance phenomenon mentioned in section 1. The theoretical
J = 4 peak area is suppressed by the above replacement of Breit—Wigner denominators. This
point is further discussed in [14].

4.3. Time-dependent photoassociation spectroscopy

In the previous sections we have studied a limiting situation of very low laser intensities for
which the analysis of thgd = 4 peak became feasible. This analysis contains only two
unknown parameters: the resonance endigy of the unperturbed shape resonance and
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Figure 9. (a) Timing of laser pulses in the time-dependent photoassociation experimgnt. (
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((©—(9)). (b), (e) Spectrum with one photoassociation pulse onby); (f) spectrum with two
photoassociation pulsed)( (g) Difference spectra showing the effect of pulse 2 alone7fer 0
and Q9 us, respectively.

the constant\_/s(g). Instead of the latter we choose the related inelastic wnﬂgp = Ay

for the fully aligned staten; = +4, mp = +6 as a parameter. The resonance energy enters
equations (18) and (19) both explicitly and implicitly, i.e. via the tunnelling rate By
far the most sensitive dependencemygs occurs Vviayoyt, the exponential energy dependence
of a tunnelling rate well known from alpha decay. It appears from our time-independent
analysis that it is impossible to determipg,: (and thereforek,es) and yiﬂe, separately from
time-independent data alone. This is clear from equation (18), which shows that the perturbed
elastic scattering wavefunction fer? = 4 contains only the sumoy + ¥2,- Equation (19)
makes clear that fon? < 4 also other linear combinations of these quantities are involved.
It turns out, however, that only a relation between these widths can be extracted from the
time-independent data. Also, we find that these data are consistent with the theory only for a
certain range of ratio;z‘om/yigel = 2+ 1. In total, the time-independent data do not lead to a
unique combination ooy andy2,,.

A completely new, time-dependent photoassociation experiment, however, does give
complementary information aboftesandy, %, and also shows direct evidence for the existence
of a shape resonance within the= 4 ground-state barrier. A more extensive description of
the experimental aspects can be found in [14]. The basic idea (see figure 9) is that the time
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Figure 10. Time-dependent signal»/A; as a function of delay tim& for I = 50 W cnv2,
T = 0.35 mK andyout/yso = 2. Experimental data with error bars are indicated as well as
theoretical curves for various lifetimes of the shape resonance

period, during which the (FORT) trapping and the optical pumping lasers are switched off, is
used for a pulse sequence consisting of either a single photoassociation pulse (expaj)ment (
or a set of two pulses separated by a delay tim@xperimentl§)). The PA laser is tuned in

such a way that only atoms within the barrier are excited. If the PA laser intensity is chosen
to be so high that the first pulse in experimdujtéxcites all atoms within the barrier, the loss

rate due to the second pulse is a measure for the build-up of the resonance state through the
barrier during the delay tim& and thus also a measure for the lifetimef the resonance

in the absence of laser light. Comparing losses in experimaptn@ p) then enables us to
determiner. If T > t the loss in experimenbf will be twice as high as in experimerd)(

while if T « 7 the two loss rates will be equal. This time-dependent effect is directly visible

in the experimental spectra in figure 9 and in figure 10. Figure 10 shows the time-dependent
signalA,/Aq: the total loss4, due to the set of second pulses only (ared ef 4 peak in the
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difference spectrum), divided by the total lossdue to the set of single laser pulses per cycle
(area of/ = 4 peak in cased)), as a function of the delay time.

In the model we construct to analyse the time-dependent photoassociation data we divide
the trapped atoms into two classéds;,, the number of atoms within the= 4 ground-state
centrifugal barrier, andVyy;, the number of atoms outside the barrier. The rate equations
governing the evolution of these numbers are

dn; _ _ _ _

dt‘” = — {W.sp/T * You/T + Vinel/B} Nin + (¥in/7) Nout (20)
dn, _ _

d;)ut = —(¥in/h) Nout + (Yout/h) Nin (21)

wherey s, is the partial width of the shape resonance for laser excitation to a bound excited
state followed by spontaneous emissign.: (yin) the partial width for tunnelling outward
(inward) through the barrier, ang the partial width for inelastic decay to lower ground-state
hyperfine levels, related tai, andyso as previously indicated. In principle, the quantitgg),

Yout andyin depend onn?. Coupled-channel calculations (as discussed in section 4.2) show
that this dependence is weak: the variation ovﬁris about£15% for yine; and smaller than
+3% for yout = yin- In our analysis we treat the coefficiems, yout aNdyin in equations (20)

and (21) as average values.

A complication in solving these equations is that saturation effects need to be taken into
account inyi, and you (due to changes ofres), and iny, sp. To study these effects we
have constructed a two-state coupled-channels program with a triplet ground gtasnd
a Q; excited state|¢)), including an imaginary potential term to describe flux loss due to
spontaneous emission. Using this program we calculate the probab#itysd|? for escape
from the elastic channel, withg the elasticS-matrix element, as a function of the collision
energy. For low laser intensities we reproduce equation (7), making use of the unitarity relation

|Sell? + [ Spal® = 1. (22)

For high laser intensities we can directly determjng,, yout and Eres from the escape
probability equation for a doorway state

2 YoutVL,sp

L 15l (E — Ered? + %(Vout + J/L,sp)2 (23)
considering the shape resonance as a doorway state that the system has to pass through to enter
the excited state (see [15], p 179). In figure 11 these quantities are shown as a function of the
laser detuning. In this figure the laser detuning is given with respect to the energy difference
of the bound excited level and the shape resonance level. For vanishing laser detuning relative
to the molecular transition frequency, we fipg,: to be reduced by a factor of 2 with respect to
the corresponding semiclassical value. This is due to the fact that the laser coupling is so strong
that the tunnelling process cannot be discussed in terms of the barg gtated|e). Instead,
the dressed statésN) = (|g, N + 1) + |e, N))/+/2 and|2N) = (|g, N + 1) — |e, N))/~/2
have to be used [34].

The rate constantg, sp, vin and you, Obtained in this way, can be used for solving
equations (20) and (21). The calculated loss rates can be compared directly with the
corresponding experimental quantities. In figure 10 the ratio of thedgshie to the second
pulse in experimenth) alone and the losg; due to the pulse in experimerg)(is compared
with the corresponding theoretical ratio f@x/yinel = 2. For adiscussion of the consequences
of this result forys, and the indirect spin—spin relaxation of4Rb condensate, we refer to
[14].
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In connection with the present work we have to address the question of whether the above-
mentioned conclusions concerning the rolevgf’ in the photoassociation process f8Rb
affect the results of [16] fof’Rb. An analysis along the lines of the present work®&b
shows that the tunnelling lifetime of the d-wave shape resonance in this case is much shorter
than yinel, justifying the earlier analysis in which we neglected the spin—orbit (and dipolar)
relaxation of the shape resonance.

5. Conclusion

We have described methods to extract information on interactions between ultra-cold atoms
from photoassociation experiments. We were able to find experimental circumstances where
this is relatively easy. These circumstances includgthe selection of the doubly polarized
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state for the colliding atoms anb)(the selection of the lowerstate as the excited electronic

state, leading to a Hund’s (e) case as the prevailing coupling scheme. The advantages of this
choice of circumstances are that the photoassociation process maps out the radial dependence
of the collisional wavefunction and its overall magnitude for a single partial wave.

We have also presented a method for the determination of excited-state parameters and
finally we have explored a possibility to explain the anomalous features of obsérved
photoassociation peaks in terms of a system of two atoms moving inside a centrifugal barrier
under the influence of the mutual spin—spin interaction of the dipolar and the spin—orbit
type. We have shown how to combine information from a time-independent photoassociation
experiment with that from a pulsed photoassociation process to confirm our explanation and
to extract additional properties of the g-wave shape resonance. The emphasis in the present
paper has been on a more complete presentation of the methods used in our previous brief
publication [14]. The final results are the same as presented in that paper.
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