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Abstract. We extract information about collisions of ultra-cold ground-state rubidium atoms
from observations of a g-wave shape resonance in the85Rb + 85Rb system via time-independent
and time-dependent photoassociation. The shape resonance arises from a quasi-bound state
inside a centrifugal barrier that enhances the excitation to the bound electronically excited state
by the photoassociation laser in the time-independent experiment. The shape resonance is
sufficiently long-lived that its build-up through the barrier can be observed by first depleting it via
a photoassociation laser pulse and then measuring the rate of photoassociation by a second laser
pulse with a variable delay time. A combined method of analysis of the time-independent and time-
dependent experiments is presented. We discuss the spectroscopy of states of two particles with
spin trapped inside a centrifugal barrier, interacting via direct and indirect spin–spin interactions.

1. Introduction

Interactions between ground-state alkali atoms play a key role in many experiments in cold-
atom physics. The accuracy of atomic clocks based on an atomic fountain of laser-cooled
Cs atoms, for instance, is limited by frequency shifts due to binary collisions between the
atoms during their fountain orbit [1]. Atomic interaction processes are also crucial for Bose–
Einstein condensation in magnetic traps [2–4]: they determine the stability or instability of
the Bose condensate via the sign and magnitude of the condensate self-interaction, and also
the inelastic rates for transitions from trapped to untrapped states. A number of methods
are available to obtain information on such interaction processes. A very powerful method
is based on the cold-atom photoassociation process [5–11]. In this free–bound transition
process two colliding ground-state atoms are excited by a photoassociation (PA) laser to a
bound electronically excited state. Due to the Franck–Condon principle, the excitation occurs
preferably near the outer turning pointr0 of the excited state, where the atoms have a velocity
comparable to that in the ground-state channel. A direct consequence is that the excitation
probability is approximately proportional to the ground-state collisional radial wavefunction
squared at this outer turning point, which enables one to map out the nodal structure of this
wavefunction along a frequency axis. This approximation can be improved by calculating a
radial transition integral, which is common practice in analysing cold-atom PA experiments
[11]. Figure 1 shows a presentation of radial wavefunctions of the ground state and the excited
state, together with their above-mentioned Franck–Condon relationship.
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Figure 1. Cold-atom photoassociation. Excitation of a colliding pair of Rb atoms by a photon (ωL )
leads to the formation of an excited Rb2 molecule in the 0−g excited-state potential and is followed

by spontaneous decay (frequencyω). The square of the ground-state radial wavefunctionu2
g(r) of

the initial collisional state and of the excited-state radial wavefunctionu2
e(r) are shown.

The actual application of this simple idea still leads to a very complicated situation because
of several facts:

(a) The hyperfine structure of the excited electronic states, the so-called hyperfine ‘spaghetti’
[12].

(b) the difficulty of determining a large number of combined triplet and singlet parameters in
the ground-state collision simultaneously;

(c) the fact that several ground-state partial wavesl, ranging fromJ − 2 (or 0) toJ + 2,
contribute to the excitation of a single rovibrational excited-statev, J . This is due to two
circumstances:

• the electronic spins contribute to the total molecular angular momentum;
• the laser photon inducing the transition introduces an angular momentum 1¯h into the

system with, in principle, various orientations relative to the initial angular momentum
of the two-atom system.

As a consequence, by angular momentum conservation, eachJ peak can be reached
starting from non-negativel values ranging fromJ − 2 toJ + 2.
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By a careful choice of experimental circumstances we have been able to eliminate all three
complications [10]. The first step is to doubly polarize the ground-state atoms, i.e. to prepare
them in the hyperfine state with fully stretched electronic and nuclear spins along a magnetic
field EB with optical pumping lasers. In this way only the triplet spin state in the initial channel
is involved, thus avoiding complication (b).

The second step is to concentrate on the excitation of a suitable excited electronic state:
the 0−g state connected with the2S1/2 + 2P1/2 separated-atom limit (we will refer to this state
as the lower 0−g state). The structure of this and all other excited states associated with the
2S + 2P separated-atom limits has been studied by Movre and Pichler [13]. In the radial
range of outer turning points of the highest 0−g (

2S1/2 + 2P1/2) rovibrational states observed,
ranging from 41a0 to 48a0, this electronic state has a very simple structure, determined by
a 2× 2 eigenvalue problem containing the fine-structure splitting of the excited atom and the
interatomic 1/r3 resonant electric dipole interaction. Due to the fact that the fine-structure
splitting dominates, the structure of the electronic state considered is simply given by the
product of the separated-atom states[(

2S1/2{1A} 2P1/2{2B})
j=0 −

(
2S1/2{1B} 2P1/2{2A})

j=0

]
/
√

2 (1)

antisymmetrized in 1 and 2, with the electronic angular momenta1
2 coupled to totalj = 0.

The notation 1A, for instance, signifies that the set of electrons 1 occupies the indicated state
around nucleus A. The angular-momentum coupling and the subtraction in the above expression
together assure the correct symmetry properties corresponding to the quantum numbers 0−

g .
As pointed out in [14], to our knowledge this is the first observed example of a Hund’s (e) case
in the literature, i.e. both the total electronic angular momentumj and the rotational angular
momentum have definite values. The latter is conserved in the PA excitation process, so that
J equals the ground-statel value, thus avoiding complication (c): each photoassociation peak
J is the direct probe of the ground-state radial wavefunction for a singlel.

Another advantage of the above choice of excited state is that it is a pure triplet state [13].
We conclude that the laser does not introduce a singlet admixture, which would spoil the above
pure triplet situation in higher order in the laser intensity, a complication that would occur in
the analysis of the time-dependent experiment in the following.

By the same choice of excited state, complication (a) is avoided. The vanishing� and
j values imply that in very good approximation the nuclear spins are decoupled from the
remaining angular momenta. The hyperfine splitting is only second order and no complex
hyperfine-coupled problem needs to be handled in the final state. By the unique initial nuclear
spin state only the fully nuclear-spin polarized final state contributes.

Due to the vanishingj value, the total electronic angular momentum before the excitation,
i.e. the vector sum of the electronic spins, is equal to minus the angular momentum of the dipole
PA photon absorbed. Using a PA laser beam propagating in the direction of the static magnetic
field EB and preparing the ground-state atoms in the hyperfine state with fully stretched electronic
and nuclear spins alongEB, we therefore find that a right-circularly polarized PA beam does not
lead to excitation, in contrast to a left-circularly or linearly polarized one. This was observed
experimentally [10]. Experimentally, we also find that only evenJ rotationally resolved states
are excited, in agreement with Bose symmetry in the (spin-symmetric) ground-state channel.
We thus achieve our goal: we are able to study the nodal structure in a single ground-state
channel by mapping it out as a function of the laser frequency.

In [10] we have been able, using the above approach, to make the first predictions for
the triplet scattering lengthaT for binary collisions of85Rb atoms and, making use of a mass-
scaling rule, also for87Rb atoms. The PA excitation probability is measured by having the PA
laser beam on intermittently with a far off resonance trapping (FORT) laser and two optical
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Figure 2. Photoassociation spectrum of the 0−g vibrational level at−5.812 cm−1, relative to the

barycentre of the S1/2 + P1/2 dissociation limit, for the collision of spin-polarized85Rb atoms.
Notice the absence of odd rotational lines due to Bose statistics.

pumping laser beams during a certain time period. The number of atoms remaining in the trap
is reduced, because virtually all excited pairs of atoms decay spontaneously to free pairs with
a kinetic energy that is too large to remain in the trap (frequencyω in figure 1). Probing the
atoms with laser-induced fluorescence, this results in a detectable change in the fluorescence
level, i.e. in a measurement of the photoassociation loss rate. Figure 2 shows an experimental
rotationally resolved PA spectrum for a vibrational state of the lower 0−

g state, measured using
a linearly polarized PA laser beam. In contrast to the case without optical pumping only even
J peaks occur.

The unique relation betweenJ andl thus realized makes it possible to simplify the analysis
considerably. In a dressed-state picture, represented schematically in figure 3, either the bound
excited level is shifted downward by the laser photon energy ¯hωL or the ground-state potential
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Figure 3. Dressed-states picture of the photoassociation process, including schematic ground-
state (Vg + 6h̄2/mr2 for l = 2) and excited-state (Ve) potentials. Changing the laser frequencyωL ,
the excited bound state energyEe(v, J ) with vibrational quantum numberv, rotational quantum
numberJ and outer turning pointr0, shifts over the Maxwellian energy distribution in the incoming
channel. The bold broken line indicates the position of the shape resonanceEres.

is shifted upward by the same energy (the resonance levelEres within the centrifugal barrier
will be discussed in the following section). It thus becomes clear that the bound excited state,
which already has a finite widthγ0 for spontaneous emission, is embedded in the ground-state
continuum and thus turns into a Feshbach resonance [15] with an additional widthγL for
laser-induced continuum decay.

While the observed85Rb PA spectrum containedJ = 0, 2, 4 rotational peaks, we used only
theJ = 0, 2 peaks in the previous analysis of [10]. TheJ = 4 peak in the85Rb PA spectrum
showed anomalous features, i.e. a larger width and a much lower saturation intensity, which
precluded an analysis along the same lines. In [14, 16] we recognized the anomaly, as well as
a similar anomalousJ = 2 peak in the87Rb PA spectrum, as being due to a shape resonance in
the ground-state channel. In this paper we will focus on the special possibilities that arise for
obtaining important information on interactions of cold Rb atoms from the exceptionally long
lifetime of the shape resonance in the85Rb +85Rb system. On the experimental side this adds
the possibility of a pulsed photoassociation experiment to the usual type of time-independent
photoassociation experiment, yielding completely new information. On the theoretical side
inelastic processes with a time scale too slow to play a significant role during an elastic collision
in the usual type of photoassociation experiment, start to contribute significantly, opening the
possibility to study a larger set of cold-collision properties. A brief description of the present
work was presented in [14].

This paper is organized as follows. In section 2 we discuss the concept of shape resonance.
Section 3 is devoted to a determination of excited-state parameters needed for further analysis.
In section 4 we discuss the decay mechanisms of the85Rb g-wave shape resonance and
include them in the analysis of the time-independent and the time-dependent photoassociation
experiments. Conclusions are presented in section 5.

2. Shape resonances

When two atoms collide via a partial-wavel 6= 0 a long-lived state inside the centrifugal
barrier may form during the collision process. Such a state is commonly referred to as a
shape resonance. Figure 3 shows, in addition, a schematic picture of a shape resonance in
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Figure 4. Square ofl = 2 partial-wave ground-state wavefunctions (87Rb)u2
g(r) in the presence

of a shape resonance and in the absence of a shape resonance at a collision energyE = 0.3 mK.
The interatomic distances for which the collision energy is smaller than the potential energy, i.e.
for which in a semiclassical picture the atoms tunnel through the barrier, are indicated. Inset,u2

g(r)

in relevant interatomic distance interval for photoassociation. Note the enhancement if a shape
resonance is present.

the ground-state potential. It has a dramatic influence on all inelastic processes taking place
within the barrier. Figure 4, for instance, shows the radial wavefunction squared for d-wave
87Rb +87Rb scattering in the presence of a shape resonance (the actual situation) and without
one. The wavefunction without a shape resonance is calculated by modifying the inner part
of the potential slightly so that the shape resonance shifts downward to negative energies.
Clearly visible in figure 4 is the phase shift between the wavefunction with and without shape
resonance.

Shape resonances are thus expected to tremendously enhance the PA loss rate. The place
where this enhancement enters the expressions for the PA loss rate is in the partial widthγL

for decay of the PA Feshbach resonance. In turn, it then shows a resonance dependence on the
collision energy, as will be described explicitly in the following section.

The existence of a shape resonance in a partial-wave channel leads to the possibility of
extracting useful information on cold collisions. Without it, as explained above, the Franck–
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Condon oscillations lead to information on the nodes in the radial wavefunction in the excitation
region. Translating this to the nodal structure at infinity, i.e. the triplet scattering length, requires
sufficiently accurate knowledge of the long-range interaction. For this reason, when extracting
a scattering length from the energy dependence of Franck–Condon factors alone, one generally
needs to use theoretical information on dispersion coefficients, in particular, theC6 coefficient
[10]. The existence of a shape resonance below the top of the barrier yields precisely the second
piece of information needed to determineC6 andaT separately from experiment, essentially
because it can also be considered as a function of these two parameters. In [16] we have
demonstrated this more explicitly than here (see in particular figure 4 and the corresponding
discussion in the text of that paper).

3. Determination of excited-state parameters

The expression for the partial widthγL used in our analysis of PA experiments contains a radial
transition matrix element with a product of excited and ground-state radial wavefunctions.
To calculate the former we need a sufficiently accurate excited-state potentialVe. The
determination of this potential is not only of interest for this purpose. Investigations of the
excited-state potential have led to a very accurate prediction of the excited-state lifetime of
optically excited atoms. The possibility of such a prediction arises from the fact that the lifetime
contains the same electric-dipole matrix element as that occurring in the 1/r3 resonant electric-
dipole part ofVe.

Existing methods to extract dipole matrix elements from photoassociation spectra are
based on a semiclassical approximation [6] or limited by the uncertainty of the inner part of
the potential [17]. The 0−g state asymptotically connecting with the S1/2 + P3/2 fine-structure
limit is an exception to this last statement, because this is a pure long-range state which can
entirely be described by a limited set of dispersion coefficients [18–21]. In this section we
will present a new approach, based on the accumulated-phase method [10, 22, 23], not limited
by any semiclassical approximation or inaccuracy of the inner part of the potential. Again, a
brief presentation of this new approach has been given in a previous publication [10]. A recent
survey of work on the extraction of accurate predictions of excited atomic state lifetimes from
cold-atom PA experiments has been presented by Weineret al [11].

As pointed out above, the excited state we are using in our experiment is the 0−
g state,

asymptotically connecting with the S1/2 + P1/2 state. In the above we have briefly referred to
the 2× 2 eigenvalue problem determining the electronic structure of the excited 0−

g -states at
large interatomic distances. It contains the fine-structure splitting of the excited atom and the
interatomic 1/r3 resonant dipole interaction. In the fine-structure basis it is given by

V0−g =
(
Eat(S1/2) +Eat(P3/2) 0

0 Eat(S1/2) +Eat(P1/2)

)
+ Vdd

= − 1

4πε0r3

(
d(P3/2) d(P3/2)

√
2 d(P1/2) d(P3/2)√

2 d(P1/2) d(P3/2) 0

)
+

(
Efs 0
0 0

)
(2)

withEat the energies of the atomic states involved,Vdd the resonant electric dipole–dipole part,
Efs the fine-structure splitting andd(P1/2), d(P3/2) the atomic electric-dipole matrix elements,
connecting the ground state with the P1/2,P3/2 excited states. Note that the2S1/2 + 2P1/2

diagonal matrix element of the 1/r3 interaction vanishes because an electronicj = 0 state
is spherically symmetric, so that there is no preferential orientation of the atomic centres of
mass relative to one another. In more formal terms this interaction has the angular momentum



294 H M J M Boesten et al

structure proportional to[
Y2(r̂),

( Ed(1), Ed(2))2 ]00 (3)

and according to the Wigner–Eckart theorem the expectation value of a rank-2 tensor operator in
an angular momentum 0 state is zero. As a consequence, since we are studying photoassociation
at interatomic distances for whichEfs is much larger than the electric dipole–dipole interaction,
the productd(P1/2) d(P3/2) is the leading term in the strength of the 1/r3 coefficient of the
lower 0−g potential. In the following we will use the shorthand notation

d2 = d(P1/2) d(P3/2) (4)

for this product.
To justify some aspects of our method we construct a model 0−

g potential. For the long-
range part we use the dispersion coefficients of Bussery [24] and Gardneret al [10]. The
inner part is based on a calculation of the eigenvalues of a potential matrix, consisting of the
triplet potentials of Spiegelmannet al [25] and anr-independent fine-structure splitting. The
two parts are connected by an exponentially varying exchange term. Using this potential we
calculate the phaseφ0 of the rapidly oscillating radial wavefunction at an interatomic distance
r1 = 30 a0 for the whole range of experimental excited bound-state energies. It turns out
that to very good accuracyφ0 varies linearly over the entire energy range. This implies that

Table 1. Positions for experimentally observed bound statesEJ of the 85Rb + 85Rb and87Rb
+ 87Rb interatomic potentials, asymptotically connecting with the S1/2 + P1/2 fine-structure
limit. The barycentre of the transition from85Rb(2s1/2(F = 3)) + 85Rb(2s1/2(F = 3))
to 85Rb(2s1/2) + 85Rb(2p1/2) is 12 578.8640 cm−1. The barycentre of the transition from
87Rb(2s1/2(F = 2)) + 87Rb(2s1/2(F = 2)) to 87Rb(2s1/2) + 87Rb(2p1/2) is 12 578.780 cm−1.

E2 (87Rb) (cm−1) E2 − E0 (87Rb) (cm−1)

12 576.986± 0.003
12 575.948± 0.003
12 575.309± 0.003
12 572.850± 0.003 0.123± 0.001
12 571.836± 0.003 0.132± 0.001
12 570.716± 0.003
12 569.489± 0.003
12 568.152± 0.003
12 566.701± 0.003

E0 (85Rb) (cm−1) E2 − E0 (85Rb) (cm−1)

12 575.499± 0.003 0.101± 0.001
12 574.776± 0.003 0.108± 0.001
12 573.963± 0.003 0.114± 0.001
12 573.052± 0.003 0.124± 0.001
12 572.037± 0.003 0.129± 0.001
12 570.92± 0.03
12 569.68± 0.03 0.146± 0.001
12 568.37± 0.03
12 566.90± 0.03 0.159± 0.001
12 565.30± 0.03
12 563.60± 0.03 0.180± 0.001
12 561.78± 0.03 0.184± 0.001
12 559.81± 0.03 0.193± 0.001
12 557.70± 0.03 0.206± 0.001
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we can summarize the history of the colliding atoms insider1 in the range of experimental
energies entirely with a very limited number of only four parameters:φ0, its derivative with
respect to the bound-state energyφE , d2, and theC6e dispersion coefficient. We also include
the higher-order dispersion interactions (Cn/r

n with n > 8 [24]); the uncertainty in these
interactions is not important to the present analysis.

In our analysis we useJ = 0 levels for85Rb andJ = 2 levels for87Rb (see table 1). In the
combined analysis of these sets we have only five parameters, because the phase derivatives
for the two isotopes can directly be related to each other by a

√
m scaling rule

87φE =
√
m(87Rb)

m(85Rb)
85φE. (5)

Note that87φ0 and85φ0 have a similar scaling relationship, but we vary these phases modπ

independently, because we do not know their integer×π parts. We now calculate for each set
of these parameters the corresponding bound-state energies and construct aχ2-function

χ2 =
∑
i

(
Eexp,i − Eth,i (

85φ0,
87φ0,

85φE,C6e, d
2)

σEexp,i

)2

(6)

whereEexp,i are the experimental bound-state energy levels,Eth,i the theoretically calculated
ones andσEexp,i the standard deviation in the experimental leveli. In figure 5 the area in the
C6e, d2-plane is shown whereχ2 is minimal or at most equal to twice the minimum value, for
the optimum values of the three phase parameters. This condition clearly defines a strip in
theC6e, d2-plane with a width of 0.2 au in thed2-direction. Using the theoreticalC6e value
from [24] we findd2 = 8.8± 0.1 au, in good agreement with a recent value measured by
beam-gas-laser spectroscopy [26].

Figure 5. Contour plot ofχ2 as a function ofC6e andd2 for the optimum values of the three phase
parameters. The broken vertical line indicates the theoretical value (Ctheor

6e ) of [24].
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4. Decay mechanisms of the85Rb g-wave shape resonance

4.1. Introduction

In the above we considered the decay of the shape resonance by PA laser excitation. Also,
other decay processes become important if the lifetime of the shape resonance is comparable to
or longer than the time scale for these decay mechanisms. In this section we consider inelastic
scattering mechanisms due to decay to other ground-state hyperfine channels. As pointed out
in the brief first report on our work [14], long-lived shape resonances lend themselves to a new
kind of sensitive study of such processes. In this connection there is special interest in so-called
second-order spin–orbit couplingV (2)so , or indirect spin–spin interaction, which arises from a
mechanism very similar to the magnetic dipolar interactionVdip between the valence electron
spins, the only difference being that it does not mediate directly through a magnetic field but
via the electric field from the charges in the system†. Recently, anab initio calculation of
V
(2)
so was presented [29] for various alkali atoms, in particular87Rb. For low molecular states

expectation values have been measured as well as calculated [28], but these give information
on small internuclear distances only.

Three mechanisms compete in depleting the shape resonance: the inelastic decay with
rate constantγinel/h̄ due to coherent contributions from dipolar decay and spin–orbit decay:
γinel = (

√
γdip +

√
γso)

2, the tunnelling rate (γout/h̄) and the excitation to the excited state
via photoassociation (γL/h̄). Note that scattering theory [15] shows that the partial-wave
amplitudes, denoted above as

√
γdip and

√
γso, are (positive or negative) real quantities. All

these quantities hinge critically on the exact energyEres of the shape resonance, which is
subject to a large uncertainty even if we know that it exists below the top of the centrifugal
barrier. Knowing the energy of this resonant state is comparable to knowing the last bound
state energy of a potential [30] and thus is important in determining the scattering length,
which is of great relevance for Bose–Einstein condensation experiments.

To determineEres andγinel, in particular itsγso part, from experiment we have performed
a simultaneous analysis of time-dependent photoassociation data at high laser power, thus
eliminating complicated cross-terms betweenγinel coupling and laser coupling during the
photoassociation pulses, and time-independent photoassociation data at very low laser
intensity, for which the laser excitation can be treated in first order. To study the influence of
γinel on the photoassociative losses at low laser intensities we have to include its influence in
the PA loss rate. This will be done in the following part of this section. In the last part we will
discuss the analysis of the time-dependent data and the determination ofEres andγso.

4.2. Photoassociation rate constant including inelastic decay

To first order in the laser intensity, the squared scatteringS-matrix element describing the
single-atom optical excitation for a pair of colliding ground-state atoms with collision energy
ε and the subsequent spontaneous decay (decay rateγ0/h̄), using a photoassociation laser with
frequencyωL and field strengthEEL = EL EσL , can be written as

|SPA|2 = γ0γL(SMSlml, ε → �JM)

(ε +Eg + h̄ωL − Ee)2 + γ 2
0 /4

. (7)

† This interaction was first studied by [27]. Its importance for the properties of ultracold alkali gases was first pointed
out by P Julienneet al. A detailed treatment can be found in [28].
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In this expression the previously mentioned partial widthγL for excitation of an|SMSlml, ε〉
ground state to an|�JM〉 excited state is equal to

γL = 2π
∣∣〈�JM∣∣[ Ed(1) + Ed(2)] · EEL

∣∣SMSlml, ε
〉∣∣2. (8)

In equations (7) and (8)Ee is the excited rovibrational state energy,Eg the asymptotic internal
energy in the ground-state channel,Ed(i) the electric dipole operator of atomi, � the total
electronic magnetic quantum number along the internuclear axisz′ andJ,M the total molecular
angular momentum quantum numbers, excluding the nuclear spins.

From|SPA|2 we obtain the photoassociation rate constantK(T , ωL) for a gas of cold atoms
with temperatureT by calculating a thermal average

K(T , ωL) =
〈
v
π

k2
|SPA|2

〉
th

. (9)

For our purposes the most important factor in this rate constant is the partial widthγL , which
will be worked out in more detail in the following paragraphs.

We expand the excited-state|�JM〉 in products of atomic fine-structure states with a well
defined electronic angular momentumj,mj :

|�JM〉 =
∑
j

cj (r)|j�JM〉

=
∑
j

cj (r)
∑
l

(−1)j−�(J�j −�|l0)|j lJM〉

=
∑
jmj lml

cj (r)(−1)j−�(J�j −�|l0)(jmj lml|JM)|jmj lml〉. (10)

Substituting this in equation (8) leads to

γL = 2πIL
ε0c

∣∣∣∣∑
jmj

(−1)j−�(J�j −�|l0)(jmj lml|JM)
∫ ∞

0
dr cj (r) u�J (r)

×〈jmj ∣∣[ Ed(1) + Ed(2)] · EσL

∣∣SMS

〉
uSMSlml,ε(r)

∣∣∣∣2 (11)

containing the Franck–Condon overlap integral between the ground- and excited-state radial
wavefunctionsuSMSlml,ε(r) andu�J (r), respectively. A shape resonance in the ground-state
channel causes the initial radial wavefunction and thusγL to show resonance behaviour. We
again refer to figure 4 demonstrating the strong enhancement.

Note that by the above substitution of equation (10) in equation (8) an additional
independent summation overl, ml quantum numbers of the final state would, in principle,
appear. Since the quantum numbers of the initial state stand only for the asymptotic incoming
spherical wave part, which may be different from the additional partial waves introduced into
the initial state by inelastic interactions, one will in general have incoherent contributions for
various final choices of these quantum numbers. This freedom should, in principle, be allowed
for, once one is to include inelastic ground-state contributions that change the relative orbital
angular momentum, such as the direct and indirect spin–spin coupling. This is what we are
now going to consider.

A straightforward but laborious method to include the influence of inelastic scattering
on the shape resonance would be to replace the simple initial state in equation (11) by a
coupled-channels wavefunction. This would automatically include combined effects from the
shape resonance and the inelastic ground-state transitions. Concentrating on the g-wave shape
resonance, a calculation of the coupled-channels state for the nine incomingml spherical waves,
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for a large set of collision energies, and for the large number of inelastic hyperfine channels
would be very laborious. Fortunately, we were able to show that a much simpler approach is
possible, by comparing a few representative coupled-channel wavefunctions inside the barrier
(the only positions where they enter the Franck–Condon integral) for a ground-state model
potential, with and without the inclusion of the inelastic spin–spin terms. Like the model
potential for the 0−g state, this model potential is only introduced for the purpose of studying
the general properties of the corresponding wavefunctions.

The Hamiltonian of the coupled-channel ground-state problem is of the form

H = T + Vc + Vhf + VZ + Vdip + V (2)so (12)

a sum of a kinetic energy operatorT , the central interactionVc, a sum of single-atom hyperfine
interactionsVhf , the Zeeman interactionVZ, the magnetic dipolar interactionVdip and the
second-order spin–orbit interactionV (2)so . A test coupled-channels calculation shows that the
exact radial location and shape ofV (2)so are irrelevant. The only relevant quantity is the area
V̄
(2)
so of the radial profile, since in the radial transition integral the elastic wavefunctions are

virtually identical and oscillate so rapidly at the interatomic distances whereV
(2)
so is effective

that only the above area multiplied by the elastic amplitude squared is of importance. The
central interactionVc is only partially known. The long-range part of the triplet potential and
associated partial-wave radial wavefunctions forr > 35a0 follow from our previous analyses
of photoassociation spectra [10, 14, 16]. At these distances they can be described by aC6-tail
and an asymptotic behaviour dictated by the triplet scattering length. For the inner part we
use the theoretical potential of Krauss and Stevens [31]. We take the singlet potential from
Amiot [32] and the above-mentionedC6 value for the tail. Finally, to vary the unknown
singlet scattering length we add a variable phase to the singlet radial wavefunctions at small
interatomic distances.

Without the inelastic spin–spin terms the shape resonance can only decay via tunnelling
through the centrifugal barrier. This implies that the initial state|SMSlml, ε〉 in equation (8)
contains only the single partial-wave radial wavefunctionuSMSlml,ε(r). Calculating this
wavefunction at a fixed arbitrary radiusr1 inside the barrier, we find that its dependence
on the collision energy can be very accurately described by a factor√

E
l+1/2

E − Eres+ iγout/2
(13)

with l = 4 for the shape resonance. This expression follows from Wigner’s threshold law in
combination with the theory of resonances in scattering processes [33]. For the energy range
where the resonance energyEres is expected to occur the tunnelling widthγout of the resonance
agrees very well with the semiclassical value.

We now proceed by adding the direct and indirect spin–spin termsVdip andV (2)so to the
Hamiltonian. We then also find inelastic hyperfine components of the initial state, which make
it necessary to extend equation (8) forγL by adding total two-atom nuclear spin quantum
numbersI,MI to the final state and summing incoherently over their values. We stress
again that the nuclear spins are decoupled in the final state. Also the asymptotic incoming
quantum numbers of the initial state have to be supplemented withI,MI values. To keep the
discussion transparent we now add a superscript ‘0’ to the quantum numbers of the elastic
component of the initial state, to distinguish them from values for the inelastic components.
Because of the choice of a fully spin-stretched initial spin state we have the restriction
S0 = 1,M0

S = +1, I 0 = 5,M0
I = +5, l0 = 4. Note that for this doubly polarized situation we

also havef 0
1 = 3,f 0

2 = 3,F 0 = 6,M0
F = +6. The initial states differ only in the value ofm0

l ,
which varies from−4 to +4. For each of these initial states the ground-state coupled-channels
calculation leads to the addition of a superposition of inelastic components.
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Figure 6. Total widthγtot = γout+
(√
γdip +

√
γso
)2

of the elastic wavefunction as a function of the

resonance energy for various̄V (2)so values (in Ka0) following from CC calculations. The straight
line shows the tunnelling width (γout ∼ E4.5).

It turns out that the complicated coupled-channel superpositions can be calculated to very
high accuracy by a simple approach, in which one calculates the influence of the inelastic
interactions on the original shape resonance state by perturbation theory. This leads to a
splitting into a set of shape resonance states with resonance energies and widths changed by
1Eres and1γ . A detailed study shows that each1Eres varies linearly with the unknown
strength ofV (2)so for reasonable strengths, just as expected from first-order time-independent
perturbation theory. The total width of each of the split resonances turns out to be equal to
the (incoherent) sum of the tunnelling widthγout and a contribution from coherent direct and
indirect spin–spin terms:

γtot = γout +1γ 1γ ≡ γinel =
(√
γdip +

√
γso
)2
. (14)

Figure 6 illustrates this result. In thēV (2)so range considered,1γ varies quadratically with the
strength ofV (2)so , as expected from first-order time-dependent perturbation theory. It should be
pointed out that the dipolar interaction already leads to similar changes by itself.

Our simple approach consists of calculating the shifts1Eresby including a limited number
of inelastic hyperfine channels that are significantly coupled in. The appropriate basis to discuss
this point is the hyperfine basis|(f1f2)FMF 〉. It turns out that of all possible components
allowed by the selection rules only a very limited number contribute significantly toγL : those
that are enhanced by the existence of the shape resonance, are sufficiently close in energy
and are coupled in via significant matrix elements. Since the hyperfine splitting is very large
compared to the inelastic interaction strengths, the coupling between the threef1, f2 subspaces
can be neglected. We restrict ourselves to thef1 = 3, f2 = 3 subspace, because it contains
the incoming fully spin-stretched state. As a consequence, the operatorsVhf , VZ, Vdip and
V
(2)
so are equivalent to simpler effective operators:Vhf becomes a constant,VZ couples the
z-componentsf1z andf2z with effective gyromagnetic ratios

γf = (γes − γni)/f = γe/6− 5γn/6 (15)
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to the field instead of the electronic and nuclear spins separately,Vdip as well asV (2)so couple
Ef1 and Ef2, instead ofEs1 andEs2.

The picture thus following from our coupled-channel calculations is that of a new
spectroscopy of long-lived states of two atoms inside a barrier, the structure of which follows
from the competition between the mutual spin–spin interaction, couplingEf1 with Ef2, and the
Zeeman precession. A fascinating aspect is the weakness of the effective spin–spin interaction:
taking into account the available volume inside the barrier it is only of the order of 0.02 mK.
The field strength needed to break it is only of order 0.2 G. With an actual field of only
7 G we are already in the strong-field limit. Although the radial dependences ofV

(2)
so and

Vdip are highly different, they operate spatially only via the expectation values of their radial
parts. The problem is therefore completely equivalent to that of two magnetic dipoles with the
orientation-dependent interaction

Vspin–spin= Vdip + V (2)so = (adip + aso)
[ Ef1 · Ef2 − 3(r̂ · Ef1)(r̂ · Ef2)

]
(16)

confined to move inside a barrier. Including the angular degrees of freedom, the eigenstates
labelledi are superpositions of basis states:∑

ml

αi,ml |(f1f2)FMF lml〉 (17)

with f1 = f2 = 3, subject to the selection ruleMF +ml = 6 +m0
l .

For the special case of the incident valuem0
l = +4, for instance, the solution is very

simple. In that case we have an elastic wavefunction component only, which differs, however,
from that without inelastic interactions. It again shows a resonance behaviour as a function of
collision energy (see figure 7), but with the original Breit–Wigner resonance denominator of
equation (13) replaced by one with modifiedEres andγ , as indicated above. Apart from this
replacement, there is to very good accuracy no change in the elastic wavefunction.

For m0
l = +3 the situation becomes more complicated. The number of coupled

components increases from nine (m0
l = +4) to 16. The two significantly coupled states,

f1 = 3, f2 = 3, F = 5,MF = +5, l = 4, ml = +3 andf1 = 3, f2 = 3, F = 5,MF =
+4, l = 4, ml = +4, degenerate without Zeeman and inelastic interactions. ForB � 0.2 G
this degeneracy is first lifted by the Zeeman interaction. Subsequently consideringVdip and
V
(2)
so as first-order perturbations we thus find the energy shifts for the split shape resonance

states. Figure 8 shows a comparison between energy shifts following from coupled-channel
calculations and values from this simple first-order perturbation treatment in which onlyV̄

(2)
so

occurs as a parameter. Clearly, the first-order perturbation treatment describes the rigorous
coupled-channel results very well. The same conclusion holds for lowerm0

l values and other
B-values (� 0.2 G).

Also, the widths of the new shape resonance states can be described with a perturbation
treatment. In this case the lowerf1, f2 hyperfine subspaces cannot be left out: the large final
available phase space leads to large contributions to the total decay width. The total inelastic
width of the resonant state is a sum of partial widths for decay to all possible hyperfine channels.
Each width contains a radial transition matrix element of the sum ofV

(2)
so andVdip between the

wavefunctions before and after decay, to which the earlier remark about the area of the radial
profile ofV (2)so applies. Making use of some Clebsch–Gordan algebra, we can express the total
set of decay matrix elements and thus the total change of the width for allm0

l andB values in
terms of the same unknown constantV̄

(2)
so .

Only one aspect needs to be discussed before finishing the presentation of the simple
approach. As pointed out above, form0

l = 4 there is only one channel involved. The
replacement of the unperturbed Breit–Wigner denominator by a perturbed one is then equivalent
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Figure 7. Square (a) and argument (b) of the elastic ground-state wavefunction atr1 = 45a0 as a
function of collision energy for̄V (2)so = 0 andV̄ (2)so = 1.5 ka0. The wavefunctions are corrected for
the background behaviourE4.5. The crosses are CC results, the lines show the result of the resonance
formula, in the casēV (2)so = 1.5 Ka0 with Eres= 1.00 mK andγtot = 1γ + γout = 25.4µK. The
energy shift due toV (2)so is indicated by1Eres.

to a simple multiplication of the total unperturbed state in equations (8) and (11) by the ratio

E − Eres+ iγout/2

E − (Eres+1Eres) + i(γout +1γ )/2
. (18)
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Figure 8. Position of a resonant level as a function ofV̄ (2)so for theml = 3 entrance channel for
various magnetic fields. In the absence ofV

(2)
so andVdip the resonance occurs atEres= 0.889 mK.

The pluses are CC results, the curves are based on a first-order perturbation model. The energy
shift of the resonant level due toVdip alone is 3µK.

For lowerm0
l values the situation is more complicated. In that case the perturbed shape

resonance statesi are superpositions of unperturbed states with coefficientsαi,ml , distinguishing
the latter states by the quantum numberml . We then need to multiply the unperturbed elastic
scattering wavefunction by∑

i

αi,ml
E − Eres+ iγout/2

E − (Eres+1Eires) + i(γout +1γ i)/2
. (19)

In other words, the coefficientsα also play the role of determining the amplitudes by which an
incoming channel excites the various perturbed shape resonances. This is a direct consequence
of Feshbach’s reaction theory for overlapping resonances (see [15], p 220). The expressions
(18) and (19) have been confirmed by coupled-channel calculations.

Comparing the ratio of theoreticalJ = 4 and 0 or 2 peak areas to the corresponding
experimental valueswithout inelastic decay, we find the theoretical ratio to be too large. This
is an anomaly of theJ = 4 PA peak that we find in addition to the anomalous features of this
peak associated with the shape resonance phenomenon mentioned in section 1. The theoretical
J = 4 peak area is suppressed by the above replacement of Breit–Wigner denominators. This
point is further discussed in [14].

4.3. Time-dependent photoassociation spectroscopy

In the previous sections we have studied a limiting situation of very low laser intensities for
which the analysis of theJ = 4 peak became feasible. This analysis contains only two
unknown parameters: the resonance energyEres of the unperturbed shape resonance and
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Figure 9. (a) Timing of laser pulses in the time-dependent photoassociation experiment. (b)–
(g) Spectra of the 0−g vibrational level at 12 573.04 cm−1 for T = 0 ((b)–(d)) andT = 0.9 µs
((e)–(g)). (b), (e) Spectrum with one photoassociation pulse only; (c), (f ) spectrum with two
photoassociation pulses. (d), (g) Difference spectra showing the effect of pulse 2 alone, forT = 0
and 0.9µs, respectively.

the constantV̄ (2)so . Instead of the latter we choose the related inelastic widthγ 0
inel ≡ 1γ

for the fully aligned statem0
l = +4,mF = +6 as a parameter. The resonance energy enters

equations (18) and (19) both explicitly and implicitly, i.e. via the tunnelling rateγout. By
far the most sensitive dependence onEres occurs viaγout, the exponential energy dependence
of a tunnelling rate well known from alpha decay. It appears from our time-independent
analysis that it is impossible to determineγout (and thereforeEres) andγ 0

inel separately from
time-independent data alone. This is clear from equation (18), which shows that the perturbed
elastic scattering wavefunction form0

l = 4 contains only the sumγout + γ 0
inel. Equation (19)

makes clear that form0
l < 4 also other linear combinations of these quantities are involved.

It turns out, however, that only a relation between these widths can be extracted from the
time-independent data. Also, we find that these data are consistent with the theory only for a
certain range of ratiosγout/γ

0
inel = 2± 1. In total, the time-independent data do not lead to a

unique combination ofγout andγ 0
inel.

A completely new, time-dependent photoassociation experiment, however, does give
complementary information aboutEresandγ 0

inel and also shows direct evidence for the existence
of a shape resonance within thel = 4 ground-state barrier. A more extensive description of
the experimental aspects can be found in [14]. The basic idea (see figure 9) is that the time
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Figure 10. Time-dependent signalA2/A1 as a function of delay timeT for I = 50 W cm−2,
T = 0.35 mK andγout/γso = 2. Experimental data with error bars are indicated as well as
theoretical curves for various lifetimes of the shape resonanceτ .

period, during which the (FORT) trapping and the optical pumping lasers are switched off, is
used for a pulse sequence consisting of either a single photoassociation pulse (experiment (a))
or a set of two pulses separated by a delay timeT (experiment (b)). The PA laser is tuned in
such a way that only atoms within the barrier are excited. If the PA laser intensity is chosen
to be so high that the first pulse in experiment (b) excites all atoms within the barrier, the loss
rate due to the second pulse is a measure for the build-up of the resonance state through the
barrier during the delay timeT and thus also a measure for the lifetimeτ of the resonance
in the absence of laser light. Comparing losses in experiments (a) and (b) then enables us to
determineτ . If T � τ the loss in experiment (b) will be twice as high as in experiment (a),
while if T � τ the two loss rates will be equal. This time-dependent effect is directly visible
in the experimental spectra in figure 9 and in figure 10. Figure 10 shows the time-dependent
signalA2/A1: the total lossA2 due to the set of second pulses only (area ofJ = 4 peak in the
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difference spectrum), divided by the total lossA1 due to the set of single laser pulses per cycle
(area ofJ = 4 peak in case (a)), as a function of the delay time.

In the model we construct to analyse the time-dependent photoassociation data we divide
the trapped atoms into two classes:Nin, the number of atoms within thel = 4 ground-state
centrifugal barrier, andNout, the number of atoms outside the barrier. The rate equations
governing the evolution of these numbers are

dNin

dt
= − {γL,sp/h̄ + γout/h̄ + γinel/h̄

}
Nin + (γin/h̄)Nout (20)

dNout

dt
= −(γin/h̄)Nout + (γout/h̄)Nin (21)

whereγL,sp is the partial width of the shape resonance for laser excitation to a bound excited
state followed by spontaneous emission,γout (γin) the partial width for tunnelling outward
(inward) through the barrier, andγinel the partial width for inelastic decay to lower ground-state
hyperfine levels, related toγdip andγsoas previously indicated. In principle, the quantitiesγinel,
γout andγin depend onm0

l . Coupled-channel calculations (as discussed in section 4.2) show
that this dependence is weak: the variation overm0

l is about±15% forγinel and smaller than
±3% forγout = γin. In our analysis we treat the coefficientsγinel, γout andγin in equations (20)
and (21) as average values.

A complication in solving these equations is that saturation effects need to be taken into
account inγin and γout (due to changes ofEres), and inγL,sp. To study these effects we
have constructed a two-state coupled-channels program with a triplet ground state (|g〉) and
a 0−g excited state (|e〉), including an imaginary potential term to describe flux loss due to
spontaneous emission. Using this program we calculate the probability 1− |Sel|2 for escape
from the elastic channel, withSel the elasticS-matrix element, as a function of the collision
energy. For low laser intensities we reproduce equation (7), making use of the unitarity relation

|Sel|2 + |SPA|2 = 1. (22)

For high laser intensities we can directly determineγL,sp, γout andEres from the escape
probability equation for a doorway state

1− |Sel|2 = γoutγL,sp

(E − Eres)2 + 1
4(γout + γL,sp)2

(23)

considering the shape resonance as a doorway state that the system has to pass through to enter
the excited state (see [15], p 179). In figure 11 these quantities are shown as a function of the
laser detuning. In this figure the laser detuning is given with respect to the energy difference
of the bound excited level and the shape resonance level. For vanishing laser detuning relative
to the molecular transition frequency, we findγout to be reduced by a factor of 2 with respect to
the corresponding semiclassical value. This is due to the fact that the laser coupling is so strong
that the tunnelling process cannot be discussed in terms of the bare states|g〉 and|e〉. Instead,
the dressed states|1N〉 = (|g,N + 1〉 + |e,N〉)/√2 and|2N〉 = (|g,N + 1〉 − |e,N〉)/√2
have to be used [34].

The rate constantsγL,sp, γin and γout, obtained in this way, can be used for solving
equations (20) and (21). The calculated loss rates can be compared directly with the
corresponding experimental quantities. In figure 10 the ratio of the lossA2 due to the second
pulse in experiment (b) alone and the lossA1 due to the pulse in experiment (a) is compared
with the corresponding theoretical ratio forγout/γinel = 2. For a discussion of the consequences
of this result forγso and the indirect spin–spin relaxation of a87Rb condensate, we refer to
[14].
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Figure 11. (a) g-wave resonance energy; (b) γout (full curve) andγL,sp (broken curve) as a function
of laser detuning forI = 48 W cm−2.

In connection with the present work we have to address the question of whether the above-
mentioned conclusions concerning the role ofV

(2)
so in the photoassociation process for85Rb

affect the results of [16] for87Rb. An analysis along the lines of the present work for87Rb
shows that the tunnelling lifetime of the d-wave shape resonance in this case is much shorter
thanγinel, justifying the earlier analysis in which we neglected the spin–orbit (and dipolar)
relaxation of the shape resonance.

5. Conclusion

We have described methods to extract information on interactions between ultra-cold atoms
from photoassociation experiments. We were able to find experimental circumstances where
this is relatively easy. These circumstances include: (a) the selection of the doubly polarized
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state for the colliding atoms and (b) the selection of the lower 0−g state as the excited electronic
state, leading to a Hund’s (e) case as the prevailing coupling scheme. The advantages of this
choice of circumstances are that the photoassociation process maps out the radial dependence
of the collisional wavefunction and its overall magnitude for a single partial wave.

We have also presented a method for the determination of excited-state parameters and
finally we have explored a possibility to explain the anomalous features of observedJ = 4
photoassociation peaks in terms of a system of two atoms moving inside a centrifugal barrier
under the influence of the mutual spin–spin interaction of the dipolar and the spin–orbit
type. We have shown how to combine information from a time-independent photoassociation
experiment with that from a pulsed photoassociation process to confirm our explanation and
to extract additional properties of the g-wave shape resonance. The emphasis in the present
paper has been on a more complete presentation of the methods used in our previous brief
publication [14]. The final results are the same as presented in that paper.
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